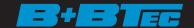


NEW! BIS-E EPOXY ADHESIVE



TECHNICAL MANUAL

TDS 2026.2

BIS-E

1

Table of Contents

BIS-E Epoxy

Features/Use Conditions/Temperature Range......

Threaded Rods

Installation Procedures	2 0		
Curing Times		OF A PERSONAL PROPERTY.	E 11/2
Specification/Design in Acc with FN 1992		THE RESERVE OF THE PARTY OF THE	的 是对外开

Rebar

Installation Procedures	- Miles
Curing Times	
9	
Specification/Design in Acc. with EN1992-4:2018, AS	b216 and IRU55

General

BIS-E Epoxy Chemical Resistance			10/11
BIS-E Epoxy Mortar Properties		332 100	12
DesignPRO Software			13
3		-	2000
	7	- IN 1800	AL DON
	41	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	大 中高
		The state of the s	
111			A 12-97/87

Gorg

TDS 2026.2

BIS-E

Epoxy Injection Adhesive ETA Option 1 Assessed for Cracked & Non-Cracked Concrete

Threaded Rods/Rebar M8 - M30/Ø8 - 32 mm

RODS: Steel 5.8 and 8.8 Zinc Plated and Hot Dip Galvanized, Stainless Steel A4-50 and A4-70, High Corrosion Resistant Steel 1.4529

Rebar: EN 1992-1-1:2004 +

AC:2010 Annex C

Features

- TA Assessed for the Installation in Flooded Holes
- No Cleaning required for Hollow Drilling
- Slow Curing
- BPA Free
- Leed Tested
- ICCONS® DesignPRO support

Use Conditions

- Installation in Cracked & Non-Cracked Concrete C20/25 to C50/60
- For Anchor Rods M8-M30, Rebar Ø8-32 mm
- For Hammer/Air drilled Holes
- For Hollow Drilled Holes
- Installation in Dry and Wet Holes
- Installation in Flooded Holes
- Overhead Installation allowed.

Approvals & Test Reports

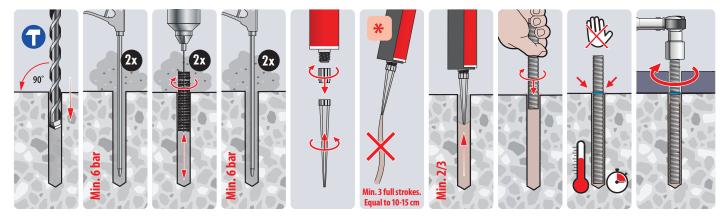
Temperature Range

BIS-E injection mortar may be applied in the temperature ranges given below. An elevated base material temperature leads to a reduction of the bond resistance.

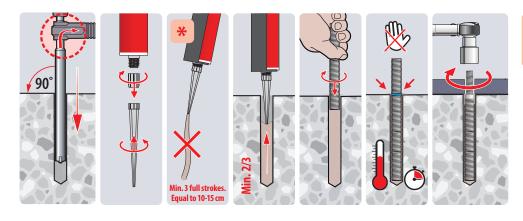
Max. long term base material temperature: Long term elevated base material temperatures are roughly constant over significant periods of time.

Max. short term base material temperature: Short term elevated base material temperatures are those that occur over brief intervals, e.g. as a result of diurnal cycling.

Temperature Range			Max. Short Term Base Material Temperature
Temp. Range I	-40°C to +40°C	+24°C	+40°C
Temp. Range II	-40°C to +60°C	+35°C	+60°C
Temp. Range III	-40°C to +70°C	+43°C	+70°C



THREADED RODS



Installation Procedures (Hammer Drilling)

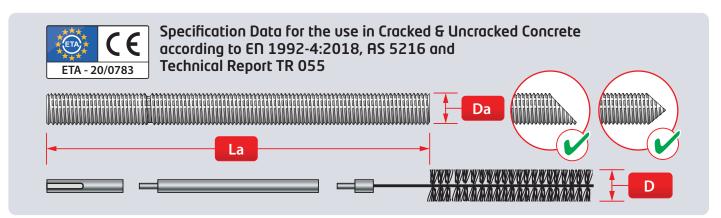
Installation Procedures (Hollow Drilling)

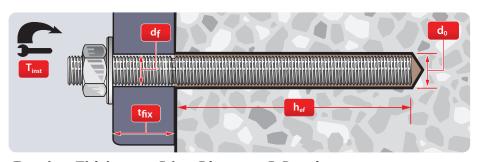
* Squeeze out separately a minimum of 3 full strokes (Equal to 10-15 cm) until the mortar shows a consistent colour.

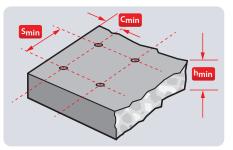
Curing Times¹⁾

Temperature ²⁾	°C	+5 to +9	+10 to +14	+15 to +19	+20 to + 24	+25 to +34	+35 to +39	+40
Processing/Working Time		80 min	60 min	40 min	30 min	12 min	8 min	8 min
Curing Time Dry Holes		60 h	48 h	24 h	12 h	10 h	7 h	4 h
Curing Time Wet Holes		120 h	96 h	48 h	24 h	20 h	14 h	8 h

¹⁾ Cartridge Temperature must be between $+5^{\circ}\text{C}$ and $+40^{\circ}\text{C}$. 2) Concrete Temperature




BIS-E



Installation Dimensions

Anchor Size	Da		W8	M10	M12	M16	M20	M24	M27	W30
Anchor Rod Length	La	[mm]	110	130	160	190	260	300	340	360
Min. Eff. Anchorage Depth	h _{ef,min}	[mm]	60	60	70	80	90	96	108	120
Max. Eff. Anchorage Depth	h _{ef,max}	[mm]	160	200	240	320	400	480	540	600
Anch. Depth for Calculation	h _{ef,calc}	[mm]	80	90	110	125	170	210	250	280
Hole Diameter	do	[mm]	10	12	14	18	22	28	30	35
Diameter Clearance Hole in the	Fixture									
- Prepositioned Installation	df	[mm]	9	12	14	18	22	26	30	33
- Push through installation	df	[mm]	12	14	16	20	24	30	33	40
Max. Fixture Height	t _{fix} ≤	[mm]	20	30	35	45	70	65	70	50
Max. Torque Moment ¹⁾	T _{inst} ≤	[Nm]	10	20	40	60	100	170	250	300
Required Volume per cm Embedment Depth	Vs	[ml/cm]	0,44	0,59	0,75	1,09	1,53	2,87	3,72	4,37

¹⁾ Max. Recommended torque moment to avoid splitting failure during installation with minimum spacing and edge distance

Member Thickness, Edge Distance & Spacing

Anchor Size	Da		W8	M10	M12	M16	M20	M24	M27	W30
Min. Member Thickness	h _{min}	[mm]	h _{ef} + 30	0 mm ≥100	mm			$h_{ef} + 2d_0$		
Min. Edge Distance	C _{min}	[mm]	35	40	45	50	60	65	75	80
Min. Spacing	Smin	[mm]	40	50	60	75	95	115	125	140

Steel Brush Dimensions

Anchor Size	Da		M8	M10	M12	M16	M20	M24	M27	M30
Brush Diameter	D	[mm]	11,5	13,5	15,5	20	24	30	31,8	37
Min. Brush Diameter	D _{min}	[mm]	10,5	12,5	14,5	18,5	22,5	28,5	30,5	35,5
Piston Plug	#	[-]	No	piston plug	required	18	22	28	30	35

Static and quasi-static resistance (for a single anchor)

All data in this section subject to:

- Correct setting (see setting instructions).
- No edge distance and spacing influence.
- Standard embedment depth (hef,calc), as specified in the 'Installation Dimensions' table.
- Concrete C20/25, $f_{ck} = 20 \text{ N/mm}^2$.
- Temperature range I: (max. long/short term temperature +24°C/+40°C).
- Shear loads are calculated without the influence of a lever arm.
- $-\psi_{SUS} = 1.0$ according EN 1992-4:2018; eq. 7.14a and AS 5216; eq 6.2.5.2(a)

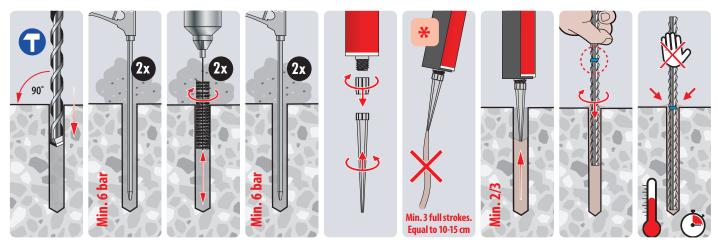
Design Resistance Dry/Wet and Flooded Holes (Hammer Drilled & Hollow Drilling)

Steel Decisive

Non-Crac	ked Concrete	Da		W8	M10	M12	M16	M20	M24
Steel 5.8	Tensile	N_{Rd}	[kN]	12.0	19.3	27.0	32.7	51.9	71.3
31661 3.0	Shear	V_{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8
Steel 8.8	Tensile	N_{Rd}	[kN]	14.4	20.0	27.0	32.7	51.9	71.3
31661 0.0	Shear	V_{Rd}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8
A4-70	Tensile	N_{Rd}	[kN]	13.9	20.0	27.0	32.7	51.9	71.3
A4-70	Shear	V_{Rd}	[kN]	8.3	12.8	19.2	35.3	55.1	79.5

Cracked (Concrete	Da		W8	M10	M12	M16	M20	M24
Ctool E O	Tensile	N _{Rd}	[kN]	6.7	9.4	13.8	20.9	35.6	45.2
Steel 5.8	Shear	V_{Rd}	[kN]	8.8	13.6	20.0	37.6	59.2	84.8
Ctool O O	Tensile	N _{Rd}	[kN]	6.7	9.4	13.8	20.9	35.6	45.2
Steel 8.8	Shear	V_{Rd}	[kN]	12.0	18.4	27.2	50.4	78.4	112.8
A 4 70	Tensile	N _{Rd}	[kN]	6.7	9.4	13.8	20.9	35.6	45.2
A4-70	Shear	V_{Rd}	[kN]	8.3	12.8	19.2	35.3	55.1	79.5

Combined tension and shear loading in accordance with EN 1992-4:2018 and AS 5216 please refer to ICCONS® DesignPRO software or contact ICCONS® engineering department **engineering@iccons.com.au** for further information.



BIS-E

REINFORCING BARS

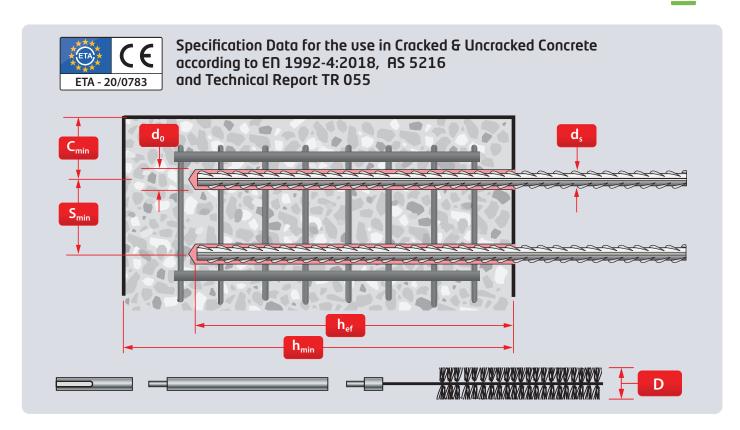
Installation Procedures (Hammer Drilling)

Installation Procedures (Hollow Drilling)

* Squeeze out separately a minimum of 3 full strokes (Equal to 10-15 cm) until the mortar shows a consistent colour.

Curing Times¹⁾

Temperature ²⁾ °C	+5 to +9	+10 to +14	+15 to +19	+20 to + 24	+25 to +34	+35 to +39	+40
Processing/Working Time	80 min	60 min	40 min	30 min	12 min	8 min	8 min
Curing Time Dry Holes	60 h	48 h	24 h	12 h	10 h	7 h	4 h
Curing Time Wet Holes	120 h	96 h	48 h	24 h	20 h	14 h	8 h


¹⁾ Cartridge Temperature must be between +5°C and +40°C. 2) Concrete Temperature

Installation Dimensions

Rebar Size	d _{nom}		Ø12	Ø16	Ø20	Ø24	Ø28	Ø32
Min. Eff. Anchorage Depth	h _{ef,min}	[mm]	70	80	90	96	112	128
Max. Eff. Anchorage Depth	hef,max	[mm]	240	320	400	480	560	640
Hole Diameter	do	[mm]	16	20	25	32	35	40
Required Volume per cm Embedment Depth	Vs	[ml/cm]	1,06	1,36	2,12	4,22	4,16	5,43

Member Thickness, Edge Distance & Spacing

Rebar Size	d_{nom}		Ø12	Ø16	Ø20	Ø24	Ø28	Ø32
Min. Member Thickness	h _{min}	[mm]			h _{ef} -	- 2d ₀		
Min. Edge Distance	C _{min}	[mm]	45	50	60	70	75	85
Min. Spacing	Smin	[mm]	60	75	95	120	130	150

Steel Brush & Piston Plug Dimensions

Rebar Size	d_{nom}		Ø12	Ø16	Ø2 0	Ø24	Ø28	Ø32
Brush Diameter	D	[mm]	18,0	22,0	27,0	34,0	37,0	44,0
Min. Brush Diameter	D _{min}	[mm]	16,5	20,5	25,5	32,5	35,5	40,5
Piston Plug	#			20	25	32	35	40

BIS-E

Static and quasi-static resistance (for a single rebar)

All data in this section subject to:

- Correct setting (see setting instructions).
- No edge distance and spacing influence.
- Minimum and maximum embedment depth, as specified in the 'Installation Dimensions' table.
- Concrete C20/25, $f_{CK} = 20 \text{ N/mm}^2$.
- Temperature range I: (max. long/short term temperature +24°C/+40°C).
- Shear loads are calculated without the influence of a lever arm.
- $-\psi_{SUS} = 1.0$ according EN 1992-4:2018; eq. 7.14a and AS 5216; eq 6.2.5.2(a)

Design Resistance Dry/Wet and Flooded Holes (Hammer Drilled & Hollow Drilling)

Steel Decisive

Non-Crack	ked Concrete	d _{nom}		Ø12	Ø16	Ø2 0	Ø24	Ø28	Ø32
Tensile Min.	$N_{Rd,min}$	[kN]	13.7	16.8	20.0	22.0	27.8	33.9	
B500B	Tensile Max.	$N_{Rd,max}$	[kN]	44.3	79.3	123.6	177.9	242.1	315.7
DOUD	Shear Min.	$V_{Rd,min}$	[kN]	20.7	36.7	56.0	61.7	77.8	95.0
	Shear Max.	$V_{Rd,max}$	[kN]	20.7	36.7	57.3	82.7	112.7	147.3

Cracked C	oncrete	d _{nom}		Ø12	Ø16	Ø2 0	Ø24	Ø28	Ø32
Tensile Min.	N _{Rd,min}	[kN]	8.8	11.7	14.0	15.4	19.4	23.8	
B500B	Tensile Max.	N _{Rd,max}	[kN]	30.2	49.8	71.8	103.4	129.0	168.5
DOUDD	Shear Min.	$V_{Rd,min}$	[kN]	20.7	32.9	39.2	43.2	54.4	66.5
	Shear Max.	V _{Rd,max}	[kN]	20.7	36.7	57.3	82.7	112.7	147.3

Combined tension and shear loading in accordance with EN 1992-4:2018 and AS 5216 please refer to ICCONS® DesignPRO software or contact ICCONS® engineering department **engineering@iccons.com.au** for further information.

BIS-E Chemical Resistance

The resistance of the BIS-E injection mortar to chemical substances is given in the table below. The data in this table are applicable to brief periods of chemical contact with full cured adhesive (e.g. Temporary contact with adhesive during a spill).

		RESISTANT	NOT RESISTANT
Chemical Agent	Concentration	Resistant	Not resistant
Accumulator acid			
Acetic acid	10%		
Acetic acid	40%		X
Laitance		✓	
Acetone	5%		
Acetone	10%		X
Acetone	100%		
Ammonia, aqueous solution	5%	✓	
Ammonia, aqueous solution	32%		
Aniline	100%		X
Beer	100%	V	
Chlorine	ALL	V	
Benzol	100%		X
Boric Acid, aqueous solution		V	
Calcium carbonate, suspended in water	ALL	V	
Calcium chloride, suspended in water		✓	
Calcium hydroxide, suspended in water		✓	
Chlorinated lime (Calcium hypochlorite)	10%		
Carbon tetrachloride	100%	✓	
Caustic soda solution	10%	✓	
Caustic soda solution	40%	✓	
Citric acid	10%		
Citric acid	50%		
Citric acid	ALL	✓	
Chlorine water, swimming pool	ALL		
Demineralized water	ALL		
Diesel oil	100%	✓	
Ethyl alcohol, aqueous solution	100%		
Ethyl alcohol, aqueous solution	50%		X
Formic acid	10%	✓	
Formic acid	30%		
Formic acid	100%		×
Formaldehyde, aqueous solution	20%	✓	
Formaldehyde, aqueous solution	30%	✓	
Freon		V	

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).

Gow

TDS 2026.2

BIS-E

Chemical Agent	Concentration	Resistant	Not resistant
Fuel Oil		✓	
Gasoline (premium grade)	100%	✓	
Glycol (Ethylene glycol)		✓	
Hydraulic fluid	Conc.		
Hydrochloric acid (Muriatic Acid)	Conc.		X
Hydrogen peroxide	10%		
Hydrogen peroxide	30%		×
Isopropyl alcohol	100%		X
Lactic acid	10%		
Lactic acid	All		×
Linseed oil	100%	✓	
Lubricating oil	100%	∨	
Magnesium chloride, aqueous solution	All	✓	
Methanol	100%		×
Standard benzine			
Motor oil (SAE 20 W-50)	100%	V	
Nitric acid	10%		×
Oleic acid	100%	V	
Perchloroethylene	100%	V	
Petroleum	100%	V	
Phenol, aqueous solution	8%		×
Benzyl Alcohol	100%		
Phosphoric acid	85%	V	
Phosphoric acid	10%	V	
Potash lye (Potassium hydroxide)	10%	V	
Potash lye (Potassium hydroxide)	40%	V	
Potassium carbonate, aqueous solution	All	V	
Potassium chlorite, aqueous solution	All	V	
Potassium nitrate, aqueous solution	All	V	
Sea water, salty	All		
Sodium carbonate	All	V	
Sodium chloride, aqueous solution	All	V	
Sodium phosphate, aqueous solution	All	V	
Sodium silicate	All	V	
Sulfuric acid	10%		
Sulfuric acid	30%		×
Sulfuric acid	70%		×
Tartaric acid	All	v	
Tetrachloroethylene	100%	<i>V</i>	
Toluene			×
Trichloroethylene	100%		×
Turpentine	100%	V	

Results shown in the table are applicable to brief periods of chemical contact with full cured adhesive (e.g. temporary contact with adhesive during a spill).

BIS-E Mortar Properties

BIS-E injection mortar may be applied in cracked and non-cracked concrete, lightweight-concrete, aerated-concrete and natural stone (Attention! Natural stone can discolour, this shall be checked in advance.). In the table below the physical properties of the BIS-E are listed.

Properties	Test Method	Result
UV resistance	-	Pass
Watertightness	DIN EN 12390-8	0 mm
Density	-	1,5 kg / dm³
Compressive strength	EN 196 Teil1	122 N / mm ²
Flexural strength	EN 196 Teil1	66 N / mm ²
Axial tensile strength	DIN EN ISO 527-2	44 N / mm²
E modulus	DIN EN ISO 527-2	6300 N / mm ²
Shrinkage	DIN 52450	< 1,4 %
Hardness Shore A	DIN EN ISO 868	99,4
Hardness Shore D	DIN EN ISO 868	86,1
Electrical resistance	IEC 93	8,0 * 10 ¹² Ω
Thermal conductivity	DIN EN 993-15	0,5 W / m·K
Spec. Heat capacity	DIN EN 993-15	1350 J / kg · K

Gow

TDS 2026.2

BIS-E

Download DesignPRO

AS5216:2021 COMPLIANT NCC ANCHOR DESIGN

IT'S EASY AND FREE

- ✓ Fast software download and it's easy and FREE!
- ✓ ICCONS® DesignPRO Anchoring Software complying with AS 5216:2021
 - Includes Design of fastenings under seismic actions
 - Includes Design of redundant non-structural system
 - Combined loading and displacement calculations
- Unique all-in-one screen interface with easy data input and results display
- ✓ Interactive 3D model display for clear anchor and baseplate layout including rotation functionality

- ✓ Integrated FEA (Finite Element Analysis) for quick base plate thickness calculations
- ✓ Offers design solutions for rigid and elastic baseplates
- Flexible custom anchor and base plate geometry design for complex shapes and applications
- ✓ Utilizes Australian steel profiles and material grades
- All product and all failure modes individually checked for precise anchor analysis and selection
- Summary or detailed design report options available to save or print

FREE DOWNLOAD for DesignPRO using the following link www.iccons.com.au/software/design-pro For further support, training and information please contact engineering@iccons.com.au

	1	2	1		
Г		ī		ī	

Notes:

BIS-E

Notes:

Victoria (Head Office)

383 Frankston-Dandenong Road, Dandenong South VIC 3175 P: 03 9706 4344

E: sales@iccons.com.au

New South Wales

Unit A/17 Seddon Street,Bankstown, NSW 2200 P: 02 9791 6869

E: salesnsw@iccons.com.au

Queensland

42-44 Nealdon Drive, Meadowbrook, QLD 4134

P: 07 3200 6455 E: salesqld@iccons.com.au

Far North Queensland

41 Corporate Crescent, Garbutt QLD 4814

P: 07 2111 3453

E: salesfng@iccons.com.au

South Australia

29-31 Weaver Street, Edwardstown, SA 5039

P: 08 8234 5535

E: salessa@iccons.com.au

Northern Territory

Unit 1/14 Menmuir Street, Winnellie, Northern Territory, 0820 P: 08 8947 2758 E: salesnt@iccons.com.au

Western Australia

90 Christable Way, Landsdale, WA 6065

P: 08 6305 0008

E: saleswa@iccons.com.au

New Zealand (Sesto Fasteners)

5E Piermark Drive

Rosedale, New Zealand 0632

P: +64 09 415 8564

E: sestofasteners@gmail.com

ICCONS (Thailand) Co. Ltd

55 Phetkasem 62/3, Bangkhae, Bangkok 0160 P: +6628010764

F: +6628010764 E: icconsthailand@iccons.com.au

